Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biomed Pharmacother ; 147: 112677, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121343

RESUMO

Lecithin: cholesterol acyltransferase (LCAT) is the only enzyme in plasma which is able to esterify cholesterol and boost cholesterol esterify with phospholipid-derived acyl chains. In order to better understand the progress of LCAT research, it is always inescapable that it is linked to high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). Because LCAT plays a central role in HDL metabolism and RCT, many animal studies and clinical studies are currently aimed at improving plasma lipid metabolism by increasing LCAT activity in order to find better treatment options for familial LCAT deficiency (FLD), fish eye disease (FED), and cardiovascular disease. Recombinant human LCAT (rhLCAT) injections, cells and gene therapy, and small molecule activators have been carried out with promising results. Recently rhLCAT therapies have entered clinical phase II trials with good prospects. In this review, we discuss the diseases associated with LCAT and therapies that use LCAT as a target hoping to find out whether LCAT can be an effective therapeutic target for coronary heart disease and atherosclerosis. Also, probing the mechanism of action of LCAT may help better understand the heterogeneity of HDL and the action mechanism of dynamic lipoprotein particles.


Assuntos
Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/farmacologia , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/patologia , Terapia Genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Proteínas Recombinantes , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia
2.
J Intern Med ; 291(3): 364-370, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761839

RESUMO

BACKGROUND: Kidney failure is the major cause of morbidity and mortality in familial lecithin:cholesterol acyltransferase deficiency (FLD), a rare inherited lipid disorder with no cure. Lipoprotein X (LpX), an abnormal lipoprotein, is primarily accountable for nephrotoxicity. METHODS: CER-001 was tested in an FLD patient with dramatic kidney disease for 12 weeks. RESULTS: Infusions of CER-001 normalized the lipoprotein profile, with a disappearance of the abnormal LpX in favour of normal-sized LDL. The worsening of kidney function was slowed by the treatment, and kidney biopsy showed a slight reduction of lipid deposits and a stabilization of the disease. In vitro experiments demonstrate that CER-001 progressively reverts lipid accumulation in podocytes by a dual effect: remodelling plasma lipoproteins and removing LpX-induced lipid deposit. CONCLUSION: This study demonstrates that CER-001 may represent a therapeutic option in FLD patients. It also has the potential to be beneficial in other renal diseases characterized by kidney lipid deposits.


Assuntos
Deficiência da Lecitina Colesterol Aciltransferase , Apolipoproteína A-I/uso terapêutico , Humanos , Rim/patologia , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas , Fosfatidilcolina-Esterol O-Aciltransferase/farmacologia , Fosfatidilcolina-Esterol O-Aciltransferase/uso terapêutico , Fosfolipídeos , Proteínas Recombinantes
3.
Metabolism ; 116: 154464, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309714

RESUMO

OBJECTIVE: CER-001 is an HDL mimetic that has been tested in different pathological conditions, but never with LCAT deficiency. This study was designed to investigate whether the absence of LCAT affects the catabolic fate of CER-001, and to evaluate the effects of CER-001 on kidney disease associated with LCAT deficiency. METHODS: Lcat-/- and wild-type mice received CER-001 (2.5, 5, 10 mg/kg) intravenously for 2 weeks. The plasma lipid/ lipoprotein profile and HDL subclasses were analyzed. In a second set of experiments, Lcat-/- mice were injected with LpX to induce renal disease and treated with CER-001 and then the plasma lipid profile, lipid accumulation in the kidney, albuminuria and glomerular podocyte markers were evaluated. RESULTS: In Lcat-/- mice a decrease in total cholesterol and triglycerides, and an increase in HDL-c was observed after CER-001 treatment. While in wild-type mice CER-001 entered the classical HDL remodeling pathway, in the absence of LCAT it disappeared from the plasma shortly after injection and ended up in the kidney. In a mouse model of renal disease in LCAT deficiency, treatment with CER-001 at 10 mg/kg for one month had beneficial effects not only on the lipid profile, but also on renal disease, by limiting albuminuria and podocyte dysfunction. CONCLUSIONS: Treatment with CER-001 ameliorates the dyslipidemia typically associated with LCAT deficiency and more importantly limits renal damage in a mouse model of renal disease in LCAT deficiency. The present results provide a rationale for using CER-001 in FLD patients.


Assuntos
Apolipoproteína A-I/uso terapêutico , Nefropatias/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fosfolipídeos/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Animais , Apolipoproteína A-I/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Nefropatias/genética , Nefropatias/patologia , Deficiência da Lecitina Colesterol Aciltransferase/genética , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfolipídeos/farmacologia , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/fisiologia , Proteínas Recombinantes/farmacologia
4.
Lipids Health Dis ; 18(1): 132, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31164121

RESUMO

BACKGROUND: Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme that esterifies cholesterol in high- and low-density lipoproteins (HDL and LDL). Mutations in LCAT gene causes familial LCAT deficiency, which is characterized by very low plasma HDL-cholesterol levels (Hypoalphalipoproteinemia), corneal opacity and anemia, among other lipid-related traits. Our aim is to evaluate clinical/biochemical features of a Chilean family with a proband showing clinical signs of familial LCAT deficiency, as well as to identify and assess the functional effects of LCAT mutations. METHODS: An adult female proband with hypoalphalipoproteinemia, corneal opacity and mild anemia, as well as her first-degree relatives, were recruited for clinical, biochemical, genetic, in-silico and in-vitro LCAT analysis. Sequencing of exons and intron-exon boundaries was performed to identify mutations. Site-directed mutagenesis was carried out to generate plasmids containing cDNA with wild type or mutant sequences. Such expression vectors were transfected to HEK-239 T cells to asses the effect of LCAT variants in expression, synthesis, secretion and enzyme activity. In-silico prediction analysis and molecular modeling was also used to evaluate the effect of LCAT variants. RESULTS: LCAT sequencing identified rare p.V333 M and p.M404 V missense mutations in compound heterozygous state in the proband, as well the common synonymous p.L363 L variant. LCAT protein was detected in proband's plasma, but with undetectable enzyme activity compared to control relatives. HEK-293 T transfected cells with vector expression plasmids containing either p.M404 V or p.V333 M cDNA showed detectable LCAT protein expression both in supernatants and lysates from cultured cells, but with much lower enzyme activity compared to cells transfected with the wild-type sequence. Bioinformatic analyses also supported a causal role of such rare variations in LCAT lack of function. Additionally, the proband carried the minor allele of the synonymous p.L363 L variant. However, this variant is unlikely to affect the clinical phenotype of the proband given its relatively high frequency in the Chilean population (4%) and its small putative effect on plasma HDL-cholesterol levels. CONCLUSION: Genetic, biochemical, in vitro and in silico analyses indicate that the rare mutations p.M404 V and p.V333 M in LCAT gene lead to suppression of LCAT enzyme activity and cause clinical features of familial LCAT deficiency.


Assuntos
Hipoalfalipoproteinemias/genética , Deficiência da Lecitina Colesterol Aciltransferase/genética , Lipídeos/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Adulto , Idoso , Chile/epidemiologia , Colesterol/sangue , HDL-Colesterol/sangue , Opacidade da Córnea/genética , Opacidade da Córnea/patologia , Éxons/genética , Feminino , Células HEK293 , Humanos , Hipoalfalipoproteinemias/sangue , Hipoalfalipoproteinemias/epidemiologia , Hipoalfalipoproteinemias/patologia , Deficiência da Lecitina Colesterol Aciltransferase/sangue , Deficiência da Lecitina Colesterol Aciltransferase/epidemiologia , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas HDL/sangue , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/genética , Linhagem , Fosfatidilcolina-Esterol O-Aciltransferase/química , Relação Estrutura-Atividade
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1351-1360, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742993

RESUMO

High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic ß-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat-/- mice the most sensitive to weight gain out of the three strains tested, followed by apoa1-/- mice. Nevertheless, only apoa1-/- mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic ß-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1-/- and lcat-/- mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.


Assuntos
Tecido Adiposo Branco/metabolismo , Apolipoproteína A-I/genética , Glucose/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/genética , Obesidade/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Tecido Adiposo Branco/patologia , Animais , Apolipoproteína A-I/deficiência , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Homeostase/genética , Insulina/metabolismo , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Deficiência da Lecitina Colesterol Aciltransferase/etiologia , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosforilação Oxidativa , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Transdução de Sinais , Termogênese/genética , Aumento de Peso/genética
6.
J Pharmacol Exp Ther ; 368(3): 423-434, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30563940

RESUMO

Familial LCAT deficiency (FLD) is due to mutations in lecithin:cholesterol acyltransferase (LCAT), a plasma enzyme that esterifies cholesterol on lipoproteins. FLD is associated with markedly reduced levels of plasma high-density lipoprotein and cholesteryl ester and the formation of a nephrotoxic lipoprotein called LpX. We used a mouse model in which the LCAT gene is deleted and a truncated version of the SREBP1a gene is expressed in the liver under the control of a protein-rich/carbohydrate-low (PRCL) diet-regulated PEPCK promoter. This mouse was found to form abundant amounts of LpX in the plasma and was used to determine whether treatment with recombinant human LCAT (rhLCAT) could prevent LpX formation and renal injury. After 9 days on the PRCL diet, plasma total and free cholesterol, as well as phospholipids, increased 6.1 ± 0.6-, 9.6 ± 0.9-, and 6.7 ± 0.7-fold, respectively, and liver cholesterol and triglyceride concentrations increased 1.7 ± 0.4- and 2.8 ±0.9-fold, respectively, compared with chow-fed animals. Transmission electron microscopy revealed robust accumulation of lipid droplets in hepatocytes and the appearance of multilamellar LpX particles in liver sinusoids and bile canaliculi. In the kidney, LpX was found in glomerular endothelial cells, podocytes, the glomerular basement membrane, and the mesangium. The urine albumin/creatinine ratio increased 30-fold on the PRCL diet compared with chow-fed controls. Treatment of these mice with intravenous rhLCAT restored the normal lipoprotein profile, eliminated LpX in plasma and kidneys, and markedly decreased proteinuria. The combined results suggest that rhLCAT infusion could be an effective therapy for the prevention of renal disease in patients with FLD.


Assuntos
Modelos Animais de Doenças , Rim/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Lipoproteína-X/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/administração & dosagem , Animais , Dieta com Restrição de Carboidratos/efeitos adversos , Proteínas na Dieta/efeitos adversos , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteína-X/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
8.
J Lipid Res ; 58(5): 994-1001, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28351888

RESUMO

The aim of this study was to evaluate the vasoprotective effects of HDL isolated from carriers of LCAT deficiency, which are characterized by a selective depletion of LpA-I:A-II particles and predominance of preß migrating HDL. HDLs were isolated from LCAT-deficient carriers and tested in vitro for their capacity to promote NO production and to inhibit vascular cell adhesion molecule-1 (VCAM-1) expression in cultured endothelial cells. HDLs from carriers were more effective than control HDLs in promoting eNOS activation with a gene-dose-dependent effect (PTrend = 0.048). As a consequence, NO production induced by HDL from carriers was significantly higher than that promoted by control HDL (1.63 ± 0.24-fold vs. 1.34 ± 0.07-fold, P = 0.031). HDLs from carriers were also more effective than control HDLs in inhibiting the expression of VCAM-1 (homozygotes, 65.0 ± 8.6%; heterozygotes, 53.1 ± 7.2%; controls, 44.4 ± 4.1%; PTrend = 0.0003). The increased efficiency of carrier HDL was likely due to the depletion in LpA-I:A-II particles. The in vitro findings might explain why carriers of LCAT deficiency showed flow-mediated vasodilation and plasma-soluble cell adhesion molecule concentrations comparable to controls, despite low HDL-cholesterol levels. These results indicate that selective depletion of apoA-II-containing HDL, as observed in carriers of LCAT deficiency, leads to an increased capacity of HDL to stimulate endothelial NO production, suggesting that changes in HDL apolipoprotein composition may be the target of therapeutic interventions designed to improve HDL functionality.


Assuntos
Apolipoproteína A-II/deficiência , Apolipoproteína A-I/deficiência , Células Endoteliais/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas HDL/metabolismo , Adulto , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
PLoS One ; 11(2): e0150083, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919698

RESUMO

Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.


Assuntos
Glomérulos Renais/efeitos dos fármacos , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Lipoproteína-X/toxicidade , Proteinúria/etiologia , Animais , Apolipoproteína A-I/metabolismo , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Membrana Basal Glomerular/efeitos dos fármacos , Membrana Basal Glomerular/patologia , Mesângio Glomerular/citologia , Mesângio Glomerular/metabolismo , Mesângio Glomerular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/metabolismo , Glomérulos Renais/patologia , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteína-X/metabolismo , Lipoproteína-X/farmacocinética , Lipoproteínas HDL/metabolismo , Lisossomos/metabolismo , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfolipases A2/metabolismo , Pinocitose , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/induzido quimicamente , Proteinúria/genética , Proteinúria/patologia
11.
J Biol Chem ; 290(51): 30514-29, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26494623

RESUMO

Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia , Diferenciação Celular , Colesterol/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Adipócitos Marrons/patologia , Animais , Colesterol/genética , Deficiência da Lecitina Colesterol Aciltransferase/genética , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Camundongos , Camundongos Knockout , Células Satélites de Músculo Esquelético/patologia
12.
J Lipid Res ; 55(8): 1721-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24950691

RESUMO

A key step in plasma HDL maturation from discoidal to spherical particles is the esterification of cholesterol to cholesteryl ester, which is catalyzed by LCAT. HDL-like lipoproteins in cerebrospinal fluid (CSF) are also spherical, whereas nascent lipoprotein particles secreted from astrocytes are discoidal, suggesting that LCAT may play a similar role in the CNS. In plasma, apoA-I is the main LCAT activator, while in the CNS, it is believed to be apoE. apoE is directly involved in the pathological progression of Alzheimer's disease, including facilitating ß-amyloid (Aß) clearance from the brain, a function that requires its lipidation by ABCA1. However, whether apoE particle maturation by LCAT is also required for Aß clearance is unknown. Here we characterized the impact of LCAT deficiency on CNS lipoprotein metabolism and amyloid pathology. Deletion of LCAT from APP/PS1 mice resulted in a pronounced decrease of apoA-I in plasma that was paralleled by decreased apoA-I levels in CSF and brain tissue, whereas apoE levels were unaffected. Furthermore, LCAT deficiency did not increase Aß or amyloid in APP/PS1 LCAT(-/-) mice. Finally, LCAT expression and plasma activity were unaffected by age or the onset of Alzheimer's-like pathology in APP/PS1 mice. Taken together, these results suggest that apoE-containing discoidal HDLs do not require LCAT-dependent maturation to mediate efficient Aß clearance.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteína A-I/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Animais , Apolipoproteína A-I/genética , Deficiência da Lecitina Colesterol Aciltransferase/genética , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Camundongos , Camundongos Knockout , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo
13.
J Clin Lipidol ; 8(2): 223-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24636183

RESUMO

A kindred affected with fish eye disease (FED) from Oklahoma is reported. Two probands with corneal opacification had mean levels of high-density lipoprotein (HDL) cholesterol (C), apolipoprotein (apo) A-I, and apoA-I in very large alpha-1 HDL particles that were 9%, 17%, and 5% of normal, whereas their parents and 1 sibling had values that were 61%, 77%, and 72% of normal. The probands had no detectable lipoprotein-X, and had mean low-density lipoprotein cholesterol (LDL-C) and triglyceride levels that were elevated. Their mean lecithin cholesterol acyltransferase (LCAT) activities, cholesterol esterification rates, and free cholesterol levels were 8%, 42%, and 258% of normal, whereas their parents and 1 sibling had values that were 55%, 49%, and 114% of normal. The defect was due to 1 common variant in the LCAT gene in exon 1: c101t causing a proline34leucine substitution and a novel mutation c1177t causing a threonine37methionine substitution, with the former variant being found in the father and 1 sibling, and the latter mutation being found in the mother, and both mutations being present in the 2 probands. FED is distinguished from familial LCAT deficiency (FLD) by the lack of anemia, splenomegaly, and renal insufficiency as well as normal or increased LDL-C. Both FLD and FED cases have marked HDL deficiency and corneal opacification, and FED cases may have premature coronary heart disease in contrast to FLD cases. Therapy, using presently available agents, in FED should be to optimize LDL-C levels, and 1 proband responded well to statin therapy. The investigational use of human recombinant LCAT as an enzyme source is ongoing.


Assuntos
Opacidade da Córnea/tratamento farmacológico , Opacidade da Córnea/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Adulto , Animais , Apolipoproteína A-I/sangue , Aterosclerose/sangue , Aterosclerose/patologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Opacidade da Córnea/sangue , Opacidade da Córnea/diagnóstico , Feminino , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/sangue , Deficiência da Lecitina Colesterol Aciltransferase/diagnóstico , Masculino , Pessoa de Meia-Idade , Linhagem , Fosfatidilcolina-Esterol O-Aciltransferase/genética
14.
Clin Exp Nephrol ; 18(2): 189-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24174160

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme involved in reverse cholesterol transport from the peripheral tissues to the liver. LCAT deficiency, in which this enzyme is congenitally absent, is a genetic disease that impairs the esterification of free cholesterol in the plasma, leading to accumulation of phospholipids, including lecithin, in the organs of the body; the clinical manifestations include corneal opacities, normochromic anemia, renal disorder, etc. The prognosis is determined by the degree of renal dysfunction, and renal biopsy specimens reveal characteristic light- and electron-microscopic findings. The disease, transmitted by autosomal recessive inheritance, is extremely rare. There have only been 88 gene mutations of the LCAT gene reported around the world, and 13 of them are from Japan. One of the characteristics of LCAT deficiency is the strong correlations among the patterns, extent and phenotypes of these gene mutations.


Assuntos
Rim/patologia , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Colesterol/metabolismo , Opacidade da Córnea/etiologia , Humanos , Mutação de Sentido Incorreto
15.
Clin Exp Nephrol ; 18(2): 194-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24129560

RESUMO

Glomerular lipid deposition is sometimes associated with a particular kind of lipid metabolism disturbance. Ultrastructural analyses using electron microscopy often indicate a disease-specific aspect of intraglomerular lipid distribution.


Assuntos
Glomérulos Renais/patologia , Lipidoses/patologia , Doença de Fabry/patologia , Células Espumosas/patologia , Humanos , Nefropatias/patologia , Glomérulos Renais/irrigação sanguínea , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Metabolismo dos Lipídeos , Microscopia Eletrônica
16.
J Am Soc Nephrol ; 24(8): 1305-12, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620397

RESUMO

Lecithin-cholesterol acyltransferase (LCAT) is an enzyme involved in maintaining cholesterol homeostasis. In familial LCAT deficiency (FLD), abnormal lipid deposition causes renal injury and nephrotic syndrome, frequently progressing to ESRD. Here, we describe a 63-year-old Japanese woman with no family history of renal disease who presented with nephrotic syndrome. The laboratory data revealed an extremely low level of serum HDL and undetectable serum LCAT activity. Renal biopsy showed glomerular lipid deposition with prominent accumulation of foam cells, similar to the histologic findings of FLD. In addition, she had subepithelial electron-dense deposits compatible with membranous nephropathy, which are not typical of FLD. A mixing test and coimmunoprecipitation study demonstrated the presence of an inhibitory anti-LCAT antibody in the patient's serum. Immunohistochemistry and immunofluorescence detected LCAT along parts of the glomerular capillary walls, suggesting that LCAT was an antigen responsible for the membranous nephropathy. Treatment with steroids resulted in complete remission of the nephrotic syndrome, normalization of serum LCAT activity and HDL level, and disappearance of foam cell accumulation in renal tissue. In summary, inhibitory anti-LCAT antibody can lead to glomerular lesions similar to those observed in FLD.


Assuntos
Glomerulonefrite Membranosa/etiologia , Rim/patologia , Deficiência da Lecitina Colesterol Aciltransferase/diagnóstico , Síndrome Nefrótica/etiologia , Feminino , Imunofluorescência , Glomerulonefrite Membranosa/patologia , Humanos , Imuno-Histoquímica , Deficiência da Lecitina Colesterol Aciltransferase/complicações , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Pessoa de Meia-Idade , Síndrome Nefrótica/patologia
17.
J Nutr Biochem ; 24(3): 567-77, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22819565

RESUMO

Lecithin/cholesterol acyltransferase (LCAT) is responsible for the esterification of the free cholesterol of plasma lipoproteins. Here, we investigated the involvement of LCAT in mechanisms associated with diet-induced hepatic triglyceride accumulation in mice. LCAT-deficient (LCAT(-/-)) and control C57BL/6 mice were placed on a Western-type diet (17.3% protein, 48.5% carbohydrate, 21.2% fat, 0.2% cholesterol, 4.5kcal/g) for 24weeks, then histopathological and biochemical analyses were performed. We report that, in our experimental setup, male LCAT(-/-) mice are characterized by increased diet-induced hepatic triglyceride deposition and impaired hepatic histology and architecture. Mechanistic analyses indicated that LCAT deficiency was associated with enhanced intestinal absorption of dietary triglycerides (3.6±0.5mg/dl per minute for LCAT(-/-) vs. 2.0±0.7mg/dl per minute for C57BL/6 mice; P<.05), accelerated clearance of postprandial triglycerides and a reduced rate of hepatic very low density lipoprotein triglyceride secretion (9.8±1.1mg/dl per minute for LCAT(-/-) vs. 12.5±1.3mg/dl per minute for C57BL/6 mice, P<.05). No statistical difference in the average daily food consumption between mouse strains was observed. Adenovirus-mediated gene transfer of LCAT in LCAT(-/-) mice that were fed a Western-type diet for 12weeks resulted in a significant reduction in hepatic triglyceride content (121.2±5.9mg/g for control infected mice vs. 95.1±5.8mg/g for mice infected with Ad-LCAT, P<.05) and a great improvement of hepatic histology and architecture. Our data extend the current knowledge on the functions of LCAT, indicating that LCAT activity is an important modulator of processes associated with diet-induced hepatic lipid deposition.


Assuntos
Lipoproteínas VLDL/sangue , Fígado/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Triglicerídeos/sangue , Adenoviridae/genética , Animais , Peso Corporal , Dieta , Técnicas de Transferência de Genes , Vetores Genéticos , Deficiência da Lecitina Colesterol Aciltransferase/genética , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas VLDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Azeite de Oliva , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Óleos de Plantas/administração & dosagem , Período Pós-Prandial , Triglicerídeos/metabolismo
18.
J Biol Chem ; 287(24): 20755-68, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22500017

RESUMO

We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr-/-xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr-/-xLcat-/- mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr-/-xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr-/-xLcat-/- mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr-/-xLcat-/- mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr-/-xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr-/-xLcat-/- mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance.


Assuntos
Colesterol/metabolismo , Estresse do Retículo Endoplasmático , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Fígado/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase , Receptores de LDL/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Colesterol/genética , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/genética , Resistência à Insulina/genética , Deficiência da Lecitina Colesterol Aciltransferase/genética , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas/biossíntese , Lipoproteínas/genética , Fígado/patologia , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de LDL/genética , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
19.
Clin Exp Nephrol ; 15(3): 424-429, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21327698

RESUMO

Familial lecithin-cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disorder of lipid metabolism, characterised by low plasma HDL cholesterol, proteinuria, haemolytic anaemia and corneal opacities. Usually renal disease progresses during the third decade of life to renal failure; however the pathogenesis of renal disease is not well understood. In this study we describe treatment of renal disease in two siblings with FLD. The proband WX at the age of 31 years presented proteinuria and ankle oedema during her third pregnancy. Diagnosis of FLD was based on a renal biopsy with characteristic serpiginous fibrillar deposits under electron microscopy, markedly decreased HDL cholesterol, esterified cholesterol levels and LCAT activity, confirmed by molecular analysis. After 3 years her proteinuria increased and she received an ACE inhibitor to which she responded well. During further increases of proteinuria she additionally received methylprednisolone and her proteinuria decreased. This long-term observation indicates the efficacy of corticosteroids and renin-angiotensin-aldosterone system blockers in the treatment of proteinuria in patients with FLD. The results suggest the role of inflammatory processes as well as dyslipidemia in the pathogenesis of glomerular disorders in LCAT-deficient patients.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Deficiência da Lecitina Colesterol Aciltransferase/complicações , Metilprednisolona/uso terapêutico , Proteinúria/etiologia , Adulto , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Feminino , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Masculino , Gravidez , Proteinúria/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...